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Abstract

The arrival of very high field magnets and cryogenic circuitries, and the development of relaxation-optimized
pulse sequences have added powerful tools for increasing sensitivity and resolution in NMR studies of biomacro-
molecules. The potential of these advances is not fully realized in practice, however, since current experimental
protocols do not permit sufficient data sampling for optimal resolution in the indirect dimensions. Here we analyze
quantitatively how increasing resolution in indirect dimensions affects the S/N ratio and compare this with currently
used sampling routines. Optimal resolution would require sampling up to ∼3R−1

2 , and the S/N reaches a maximum
at ∼1.2R−1

2 . Currently used data acquisition protocols rarely sample beyond 0.4R−1
2 , and extending evolution

times would result in prohibitively long experiments. We show that a general solution to this problem is to use
non-uniform sampling, where only a small subset of data points in the indirect sampling space are measured, and
possibly different numbers of transients are collected for different evolution times. Coupled with modern methods
of spectrum analysis, this strategy delivers substantially improved resolution and/or reduced measuring times
compared to uniform sampling, without compromising sensitivity. Higher resolution in the indirect dimensions
will facilitate the use of automated assignment programs.

The capabilities of nuclear magnetic resonance
(NMR) spectroscopy for investigating biomolecules
have improved dramatically since the pulsed Fourier-
transform method (FT-NMR) was first developed
(Ernst and Anderson, 1966). Isotopic enrichment
schemes, cryogenic detection circuits, and super-
conducting magnets operating at fields up to 21.1
Tesla have enabled the routine study of large bio-
molecules at sub-millimolar concentration in aqueous
solutions. Despite these developments, biomolecules
larger than 30 kDa yield spectra that are sufficiently
crowded to make structural studies difficult. Deu-
teration strategies and transverse relaxation optim-
ized spectroscopy (TROSY) mitigate the problem of

spectral overlap by reducing the natural linewidths
(Venters et al., 2002; Pervushin et al., 1997). Yet the
potential of such methods to provide higher resolution
using high field instruments is not routinely realized
due to the practical inability to record sufficient data.
In this paper we discuss such practical barriers and a
general strategy for surmounting them.

The resolution of an NMR experiment is determ-
ined by a number of factors. The digital resolution,
�f, is given by

�f = 1

N�t
, (1)

where �t is the time between samples (the dwell time)
of the free induction decay (FID) and N is the num-
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ber of points in the spectrum. The spectral width (the
range of frequencies that can be detected without ali-
asing) is equal to 1/�t. (Note that N is generally larger
than Ns , the number of time-domain data samples.)
Since the spectral dispersion of nuclear resonances in-
creases linearly with magnetic field strength, so must
the spectral width. However, coupling constants, and
in a first approximation the line widths, do not vary
with field strength, so the resolution required to distin-
guish coupled peaks is independent of field strength.
As an example, at a field strength of 11.7 T (ν(1H) =
500 MHz) a 36-ppm 15N spectral width corresponds
to 1800 Hz, or �t = 556 µs. To achieve a digital
resolution of 2 Hz requires N ≥ 900. At 21.1 T,
36 ppm corresponds to 3240 Hz, or �t = 309 µs,
requiring N ≥ 1620 for 2-Hz digital resolution. For
a three-dimensional experiment, the total number of
points in each f1 − f2 plane required to maintain
the same digital resolution increases by a factor of
(9/5)2 = 3.24 at 900 MHz as compared to 500 MHz.
Given the amount of instrument time typically avail-
able, it is impractical to increase the number of FIDs
by the same factor. Hence the ratio of Ns to N is forced
to be lower at higher field strengths, to the detriment
of the achievable resolution.

The ability to resolve peaks depends not only on
the digital resolution, but also on the natural linewidth
of the peaks,

L = R2

π
, (2)

where R2 is the relaxation rate of the detected coher-
ence. For the special case N = Ns, the digital resolu-
tion (Equation 1) is related to the natural linewidth by
the formula:

�f = L

(
π

R2

) (
1

Ns�t

)
= L

(
πR−1

2

tmax

)
, (3)

where tmax is approximately the largest delay time
sampled, equal to Ns�t for uniform sampling. Ideally,
the digital resolution should be comparable to the nat-
ural linewidth, which would require tmax to be as long
as πR−1

2 . However, there is no point in making �f sig-
nificantly smaller, which means that tmax should not be
much larger than πR−1

2 . It is common practice to set
tmax considerably smaller than πR−1

2 , and increasing
tmax by collecting additional samples would lead to a
genuine improvement in resolution.

This analysis ignores the use of nonlinear tech-
niques, such as extrapolation by linear prediction (LP),
which in the case of high S/N are capable of increases

in resolution without the need for additional sampling.
The formal results on the influence of tmax on sensit-
ivity and resolution that we present here are indicative
of the increase in tmax needed to maintain resolution as
the magnetic field is increased, but the specific num-
ber of samples needed will depend on the extent of
LP extrapolation, if employed. The use of nonuniform
sampling, in contrast to LP, permits an increase in
tmax without increasing Ns. A detailed analysis of the
influence of Ns on resolution using LP was reported
previously (Stern et al., 2003).

Table 1 lists the values of N yielding tmax =
πR−1

2 /2 (sufficient to distinguish signals separated by
twice the natural linewidths, and yielding nearly op-
timal S/N, see below). The linewidth estimates were
obtained by empirically analyzing correlation times
for several proteins as a function of molecular weight
(Wagner, 1997) and calculating relaxation rates using
standard methods (Peng and Wagner, 1992; Yamazaki
et al., 1994; Pervushin et al., 1997; Venters et al.,
2002; Cavanagh et al., 1996). Results are shown for
(a) antiphase 15Nx

1Hz coherence (b) 15Nx
1Hz coher-

ence via TROSY and (c) 13Cx
2Hz coherence (details

in the figure caption). These computations provide
useful guidelines for average linewidths that may be
achieved, but effects from remote nuclei, internal dy-
namics, and secondary and tertiary structure will cause
further perturbations in observed correlation times (τc)
and decay rates (R2).

More efficient relaxation at higher fields increases
R2 values slightly, but this effect does not scale lin-
early. On the other hand, deuteration and TROSY ex-
periments yield decreased R2 values (R−1

2 ∼ 102 ms)
for 15N and 13C evolution in proteins with molecular
weights of 20 kDa and higher. Even so, the guidelines
in Table 1 indicate that data collection needs to be in-
creased by a factor of 2–20 from the 32–64 samples
that are typically obtained in indirect evolution peri-
ods of triple resonance experiments. It is clear from
Table 1 that typical values of tmax are very short com-
pared to R−1

2 values even at a field strength of 14
Tesla (ν(1H) = 600 MHz). In principle, spectral fold-
ing (which increases �t and thus tmax for fixed Ns)

can bring the requirements down to the 32–64 range
of Ns, but such folding is not generally acceptable.
Zero-filling (extending the measured data by append-
ing zeros) can be used to increase N , but does not
improve the ability to resolve closely-spaced reson-
ances. Although LP can improve the resolution of a
spectrum, it has limits and disadvantages; it assumes
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Table 1. Number of uniform intervals (N ) required to sample to an 15N evolution period of tπ/2 = πR−1
2 /2 (ms) for several

protein sizes and static fields, using computed line widths for (a) antiphase 15Nx
1Hz coherence assuming an internuclear distance

dNH = 1.02 Å and a symmetric chemical shift tensor with �σ(15N) = −160.0 ppm (b) 15Nx
1Hz coherence via TROSY with

dNH = 1.02 Å, �σ(15N) = −160.0 ppm, and taking the angle between the principal axis of the chemical shift tensor and the N-H
bond to be 15 degrees and (c) 13Cx

2Hz coherence using dCD = 1.05 Å, �σ(13C) = 25.0 ppm but considering no additional effects
from other nuclei outside the C-H spin pair. For (a) and (b) two non-covalently associated protons, 2.8 Å each from the covalently
attached proton, are included in the computation. Additionally, spectrometer inhomogeneity of 1.5 Hz is assumed for all cases. Spectral
windows are taken to be 36 ppm for 15N and 32 ppm for 13C (e.g., 13Cα spectral region), based on the distribution of shifts reported
in the BioMagResBank (Seavey et al., 1991)

Static field

14.1 T 16.4 T 17.6 T 18.8 T 21.1 T

MW/kDa (τc) N tπ/2/ms N tπ/2/ms N tπ/2/ms N tπ/2/ms N tπ/2/ms

(a) 15Nx
1Hz:

10 (5.46 ns) 247 113 279 109 292 107 304 104 327 99.3

20 (9.98 ns) 170 77.5 188 73.6 196 71.5 202 69.4 214 65.1

30 (14.3 ns) 130 59.2 143 55.8 148 54.0 152 52.2 160 48.7

(b) 15Nx
1Hz (TROSY):

30 (14.3 ns) 312 143 394 154 437 159 476 163 554 169

50 (22.7 ns) 235 108 302 118 336 123 368 126 431 131

100 (43.0 ns) 147 67.2 192 75.0 215 78.5 237 81.4 280 85.0

(c) 13Cx
2Hz:

30 (14.3 ns) 1041 215 1170 208 1233 205 1294 201 1395 193

50 (22.7 ns) 866 179 963 171 1008 167 1052 163 1120 155

100 (43.0 ns) 616 127 673 120 699 116 724 112 759 105

N = number of uniform intervals that span tπ/2 = πR−1
2 /2 (ms); τc (ns) = rotational correlation time.

Lorentzian lineshapes and, depending on the signal-
to-noise ratio (S/N) of the data, can introduce false
peaks and small frequency errors (Stern et al., 2002).
Expanding the dimensionality of an NMR experiment
can improve the dispersion of signals, and thus the res-
olution. However it is not always feasible to use more
than two indirect evolution periods since further co-
herence transfer and evolution steps may unacceptably
attenuate the observable signal for large biomolecules.

Increasing tmax will undoubtedly improve the res-
olution in indirect dimensions. However the amount
of sensitivity lost by sampling to longer times is
less obvious. To analyze these losses, we show how
the choice of tmax affects the S/N ratio in uniformly
sampled spectra and conclude that increasing resol-
ution only moderately diminishes the S/N. An ideal
method for improving resolution should not sacri-
fice S/N, should be applicable to all pulse sequences,
should use no more data acquisition time than current
practice affords, should robustly handle data with low
S/N, should apply to arbitrary lineshapes, and should
not introduce errors or bias. Below we will describe

the technique of non-uniform sampling, which closely
meets these criteria.

Theory

The total duration of an experiment is proportional to
the number of FIDs, Ns, and the number of transi-
ents, nt, recorded for each FID. The most important
constraint on these values is the available instrument
time. Increasing nt will improve the S/N ratio, whereas
increasing N will primarily improve resolution. As
will be shown below, increasing Ns also increases
the S/N ratio (not as much as increasing nt) up to
tmax = 1.26R−1

2 but reduces the S/N for longer val-
ues. A balance must be struck based on the desired
S/N ratio, the desired resolution, the inherent S/N of
the sample, and the natural linewidths. We will first
consider the situation where experiment time is not
limited, exploring how sensitivity and resolution vary
with Ns for fixed nt.

The height, S, of a line in an FT-NMR spectrum is
proportional to the integral of its corresponding time
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Figure 1. The signal to noise ratio as a function of tmax, given by Equation 6, is plotted for an exponentially decaying signal containing
Gaussian distributed noise. Inset: evolution periods that would result from using 32 samples and a spectral width of 36 ppm (e.g., protein 15N
amide region) are shown for 15Nx

1Hz evolution (left panel), and TROSY-15Nx
1Hz evolution (middle panel). In the right panel, 13Cx

2Hz
evolution periods are shown assuming 64 samples and a spectral width of 32 ppm (e.g., protein Cα region). Positions of evolution times relative
to R−1

2 were estimated for different molecular weights and field strengths as indicated.

domain signal over the acquisition time, tmax. The
dependence on tmax and R2 can be approximated by

S ∝
tmax∫
0

e−tR2dt. (4)

The amount of noise for the same acquisition period is

Noise ∝ √
tmax. (5)

The S/N is then

SN(tmax) ∝
(
1 − e−tmaxR2

)
R2

√
tmax

, (6)

which yields a maximum when

tmax = R−1
2 ln(2R2tmax + 1) (7)

or tmax ≈ 1.26R−1
2 , since a closed solution for Equa-

tion 7 is not possible. A similar result is obtained
for discrete sampling (Stern et al., 2002). Equation
6 is essentially a special case of the S/N per unit
measurement time, used by Ernst and coworkers to
demonstrate the sensitivity of Fourier spectroscopy
(Ernst et al., 1987). Since sensitivity is defined to be
S/N per unit time, we obtain the sensitivity by divid-
ing Equation 6 by

√
tmax. The preceding analysis can

be validated also by noticing that if a non-decaying
signal is assumed in Equation 4 (i.e R2 = 0) then one
finds the well known result that SN (tmax) ∝ √

tmax.

Equation 6 is plotted in Figure 1 and we have found
it to be an accurate model of experimentally acquired
data, even in the presence of non-ideal lineshapes and
other experimental artifacts (Figure 2). Insets in Fig-
ure 1 illustrate the times tmax that would result when
using 32–64 samples for the classes of experiments
considered here. It is evident in all cases of Table 1
and Figure 1 that �f � L. It is worth noting that our
analysis is related to but different from that of Levitt
et al. (1984) who considered the S/N per unit time,
as a function of spectral width (or dwell time). By
contrast, we are considering the total S/N , with the
spectral width held fixed, as a function of tmax.

We may now evaluate the S/N gain or loss from
extending the evolution time by a factor n using
uniform sampling,

εtime = (1 − e−ntmax)

(1 − e−tmax)

1√
n
, (8)

where R2 = 1. Alternatively, the number of transi-
ents could be increased by a factor of n, leading to
an enhancement εtransients = √

n. We then express the
penalty in S/N for acquiring a decaying signal with
uniform sampling to longer times versus acquiring
additional transients as

ε1(n, t) = εtime

εtransients
= (1 − e−ntmax)

(1 − e−tmax)

1

n
, (9)
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Figure 2. Analysis of an experimental decaying signal containing
noise: (a) The 1H time domain signal from the residual water in
a sample of 99% D2O doped with 0.1 mg/ml GdCl3, following a
0.1 µs excitation pulse using a UnityPlus (Varian Inc.) spectrometer
operating at ν(1H) = 400 MHz. The first 0.75 seconds of the FID
are displayed, however the full FID used 16384 samples for an ac-
quisition time of 1.365 seconds, and also includes a small ethanol
signal that is useful to evaluate the shimming quality. The residual
water line was shimmed to a non-spinning line width (full width at
half maximum) of 3.88 Hz, as determined by nonlinear least squares
fitting of the frequency domain line shape to a Lorentzian function
(b) the RMS noise level as a function of acquisition time is plotted
for the experimental data (open circles); the function f (t) = √

t

is superimposed without fitting (filled diamonds); (c) the signal to
noise ratio is plotted for the experimental data (open circles), and
for a nonlinear least squares fit of the data to Equation 6 (filled
diamonds), which resulted in a linewidth of 3.84 Hz.

which is plotted for several values of n in Figure 3.
Although a factor of n = 2 avoids serious decreases in
S/N , we will show that this rarely suffices for obtain-
ing the maximum resolution available. For example, if
tmax = R−1

2 /2, a signal must be extended by a factor
of n = 6 to gain the full resolution; this would give just
40% of the S/N that would have resulted if 6 times as
many transients had been collected. We note that a typ-
ical procedure for setting up a n-D NMR experiment is
to first determine the number of transients that provide

acceptable S/N , and set the number of increments in
the indirect evolution periods to fill the allotted meas-
uring time. This procedure is analogous to choosing
short evolution periods and minimizing n in order to
reduce signal losses, which trades away resolution in
favor of sensitivity.

The preceding analysis assumes that samples are
collected at uniform intervals with a fixed number of
transients for each sample. We refer to this as uniform
sampling. By contrast, non-uniform sampling can be
defined as collecting different numbers of transients
for different sample times. As a practical matter, the
number of transients must be an integer multiple of
the length of the minimum phase cycle. Frequently the
minimum phase cycle yields adequate sensitivity; in
these experiments the number of transients collected
for each sample time is either zero or the length of
the minimum phase cycle. The obvious advantage of
nonuniform sampling is that tmax can be larger than
Ns�t (since some of the intermediate times are not
sampled), yielding improved resolution for a given Ns.

A ‘sampling schedule’ is a specification of the
number of transients collected for each sample time.
In this paper we only consider sampling schedules in
which the number of transients is zero or the length
of the minimum phase cycle. Thus a sampling sched-
ule will simply be a non-consecutive list of evolution
times. To optimize S/N, an efficient strategy is for the
sampling schedule to include more samples when the
signal intensity is high and fewer when it is low (Barna
et al., 1987). By analogy with the matched filter, for
exponentially decaying signals this leads to sampling
schedules with an exponentially decaying density of
samples. Figure 4a shows the S/N computed for sev-
eral exponentially decaying signals using a range of
exponential sampling schedules. The signals have line
widths of 5 Hz, 10 Hz, and 15 Hz and the curves were
computed assuming a 36 ppm 15N spectral width and a
static field of 21.1 T. Figure 4c illustrates the sampling
schedules. Each schedule used 64 samples distributed
over a progressively greater range of sample times, up
to a factor of 4 times the span of 64∗�t . Increasing
tmax decreases the S/N by up to 10% for the 5 Hz
signal and 20% for the 15 Hz signal. In general, as
the sampling schedule scaling factor increases, the rate
at which S/N is reduced by progressively extending
tmax with non-uniform sampling decreases. We show
in Figure 4b the S/N of TROSY-15Nx

1Hz signals com-
puted using the same R2 values as in Table 1 for a
50 kDa protein, and using the sampling schedules in
Figure 4c. When increasing the field from 14.1 to
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Figure 3. The relationship between signal to noise and resolution as a function of signal evolution time is illustrated with plots of Equation 9
showing the decrease in S/N from acquiring a signal further by a factor n versus acquiring n times more transients for n = 2, 4, 6, 8, 10, 12, 14,
and 16. Each curve is plotted to a maximum time t = πR−1

2 /n.

21.1 Tesla, R2 decreases due to the TROSY effect
while �t must be decreased to maintain a constant
spectral window. Thus, the S/N decreases more slowly
with tmax at higher fields (Figure 4b). Generally it
is evident from Figure 4 that the use of non-uniform
sampling to increase tmax (and thus the resolution)
does not greatly diminish sensitivity, particularly when
modern experiments at high fields are applicable to
molecules with very small R2 values.

The discrete Fourier transform (DFT) algorithm
may only be applied to uniformly sampled data, so
an alternative algorithm for spectral estimation is re-
quired to take advantage of the combined sensitiv-
ity and resolution offered by non-uniformly sampled
data. In this communication we use maximum entropy
(MaxEnt) reconstruction (Hoch and Stern, 1996),
which has been shown to provide highly accurate and
sensitive spectral estimations (Stern et al., 2002). The
MaxEnt algorithm we use here reconstructs the (hy-
per) complex spectrum with the highest entropy that is
consistent with the data, and is different from the Burg
MEM algorithm (Burg, 1978), which yields the power
spectrum and has been known to occasionally generate
false positive peaks. MaxEnt reconstruction of non-
uniformly sampled data is also available in the GIFA
package (Pons et al., 1996). However, GIFA uses a
different algorithm and a different entropy functional.

Thus, the results obtained using GIFA may not be the
same as those using RNMRTK.

Another method that has been applied recently
to non-uniformly acquired multi-dimensional NMR
experiments, termed three-way decomposition, is im-
plemented in the program MUNIN (Orekhov et al.,
2001). This approach decomposes NMR spectra into
sums of components and appears to be well suited
for analysis of NOE-HSQC data sets, by exploiting
simultaneously the high density of information in all
three dimensions. A detailed comparison of methods
is outside the scope of this communication, however
we call attention to two important features shared by
both MaxEnt reconstruction and three-way decom-
position, that no assumptions are made regarding the
number or shape of the signals in the data, and that
the computations are readily accessible to desktop
computing.

The higher resolution afforded by using non-
uniform sampling to extend tmax can significantly aid
in the task of obtaining with automated assignment
programs complete spectral assignments for hetero-
nuclei (e.g., 13C, 15N) in large biomolecules (Hyberts
and Wagner, 2003). To document the enhanced ‘as-
signability’ due to the use of non-uniform sampling
and MaxEnt reconstruction we demonstrate the resol-
ution gain obtainable with this approach. Figure 5a–
c compares 15N(1H) heteronuclear single quantum
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Figure 4. The dependence of S/N upon a range of sampling schedules is illustrated for (a) 5 Hz, 10 Hz, and 15 Hz 15N signals assuming a
spectral width of 36 ppm at 21.1 Tesla, and for (b) 15Nx

1Hz TROSY signals corresponding to R2 values computed in Table 1 for a 50 kDa
protein and for static fields of 14.1 T, 16.4 T, 18.8 T, and 21.1 T respectively. Representative sampling schedules that were used to compute the
S/N values in (a–b) are shown in (c) for scaling of tmax by factors up to 4 while keeping the overall number of samples constant at 64. In (a)
and (b) S/N values are normalized to 1 and are not meant to indicate absolute sensitivities.

coherence spectra acquired uniformly and nonuni-
formly on a 15 kDa protein (u-15N enrichment) on a
17.6 Tesla spectrometer (ν(1H) = 750 MHz). The ex-
pected 15N anti-phase line width for a general 15 kDa
protein is estimated to be about 6 Hz, giving a pre-
dicted decay time constant for this sample 1/R2 =
(π ∗ LW) = 1/0.053s. Assuming a spectral width of
36 ppm, an acquisition with 32 uniform increments
would span just tmax = 0.0117 s. To explore the
resolution achieved using this sampling interval, we
first acquired a spectrum with uniform sampling to

tmax = 0.064 s in the indirect evolution period us-
ing N = 256 samples. A crowded region from this
spectrum is shown in Figure 5a. For Figure 5a, the
signal was extended to 512 points with linear predic-
tion, apodized with a single 90-degree shifted sine bell
function, and extended with zeros to a final size of
1024 points before applying the discrete Fourier trans-
form (DFT). Cross-sections at δ(1H) = 8.41 ppm (not
shown) and δ(1H) = 8.36 ppm contain 15N reson-
ances separated by 18.5 Hz and 17.0 Hz, respectively,
which are successfully resolved by this experiment
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Figure 5. A comparison of 15N(1H) heteronuclear single quantum correlation spectra acquired at 17.6 Tesla, ν(1H) = 750 MHz with: (a) 256
uniform samples up to tmax = 0.064 s, (b) 64 uniform samples up to tmax = 0.016 s and (c) 64 samples distributed up to tmax = 0.064 s.
Cross-sections at δ(1H) = 8.36 ppm are also shown for (a), (b) and (c). The signals in (a) and (b) were extended to twice their respective sizes
with linear prediction, apodized with a single 90◦ shifted sine bell function, zerofilled to 1024 total points, and processed with the fast Fourier
transform. The signal in (c) was processed by row-wise maximum entropy reconstruction using a constant-lambda algorithm (Schmieder et al.,
1997, Hoch and Stern, 1996), and required less than one minute of processing time using a 1.5 GHz Athlon (AMD) processor (Red Hat Linux
7.2). The list of samples for (c) is {1–7, 9–12, 15, 16, 18, 20, 21, 22, 24, 25, 27, 28, 30, 31, 33, 35, 36, 38, 40, 42, 44, 46, 47, 51, 52, 56, 59, 61,
64, 67, 68, 71, 74, 78, 82, 86, 89, 93, 98, 102, 108, 112, 120, 125, 132, 142, 153, 161, 178, 188, 192, 209, 218, 239, 256}; (d–f) Simulation of
the resolution gain using nonuniform sampling and MaxEnt reconstruction in the 13C dimension of an HNCA experiment assuming a 50 kDa
protein and sample deuteration (see Table 1 for relaxation parameters). In (d) 256 uniform samples were extended with linear prediction to
512, treated with a 3 Hz exponential window function and zerofilled to 1024 samples prior to the DFT along the 13C dimension. In (e) 64
uniform samples were doubled by linear prediction, treated with a 3 Hz exponential window and zerofilled to 1024 prior to DFT. In (f) MaxEnt
reconstruction was applied to 64 samples distributed nonuniformly up to and including N = 256.

(�f = 1/0.064 = 15.6 Hz). Figure 5b shows the
same spectral region when the first 64 samples of the
uniform signal are extended by linear prediction to
128 samples, apodized with a single 90-degree shif-
ted sine bell function, and extended with zeros to
1024 points before applying the DFT. Clearly the data
are no longer sufficient to resolve distinct signals in
this region (�f = 1/0.016 = 62.5 Hz). Figure 5c
shows the spectrum obtained by MaxEnt reconstruc-
tion of a separately acquired data set where 64 samples

were distributed over the evolution period of 0.064 s.
The spectrum in Figure 3c was acquired in the same
elapsed time as that shown in Figure 5b, but provides
high resolution comparable to that observed in Fig-
ure 5a since samples are retained up to and including
Ns = 256. The sampling schedule used for Figure 5c,
listed in the figure caption, follows an exponential dis-
tribution; for example just 15 samples are distributed
in the range [102,256]. MaxEnt reconstruction is rel-
atively insensitive to truncated or missing data so that
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no window function is required prior to running the
MaxEnt algorithm. In contrast, signal extrapolation of
uniformly sampled data by linear prediction generally
requires subsequent convolution of the signal with a
window function to avoid artifacts in a DFT spectrum.
Whereas some apodization functions can be applied
to uniformly sampled data prior to a DFT to suppress
artifacts while artificially improving the line widths of
the resonances (Ernst et al., 1987), such convolutions
can distort line shapes, enhance noise, and suggest
a higher resolution in the data than may be justified.
When faced with a spectral region that is poorly re-
solved, parametric fitting techniques may be applied
to the data (Andrec and Prestegard, 1998).

To illustrate this, we also carried out simulations
of a region of a 13C-1H correlation spectrum, shown
in Figure 5d–f, that would be analogous to a strip plot
for an HNCA experiment. Two signals separated by
28 Hz were used in the indirect dimension, each hav-
ing an intrinsic line width of ∼3.2 Hz, and randomly
distributed noise was injected such that each signal has
an S/N of about 15:1 in the full length (N = 256)
FID. Their relaxation rates in the indirect evolution
period were taken to be the same and corresponded to
13Cx

2Hz coherence for a 50 kDa protein at 21.1 Tesla
(see Table 1). A 32 ppm spectral width (7243 Hz) was
also used. Similar to Figure 5a-c, uniformly sampled
data for N = 256 and N = 64 were processed using
linear prediction to double the data length in the indir-
ect dimension. For uniform sampling with Ns = 256,
processed strips are shown in Figure 5d, and the res-
olution obtainable with Ns = 64 with uniform and
non-uniform sampling is shown in strips e and f of
Figure 5, respectively. It is clear from Figure 5e that,
regardless of the use of linear prediction, the two sig-
nals are not resolvable due to the low experimental
value of tmax = 8.8 ms. However by using nonuniform
sampling to distribute 64 samples up to tmax = 256,
the two signals are resolved (Figure 5f). The line
widths in Figure 5f are not identical to those obtained
in Figure 5d, however some broadening of lines in
MaxEnt spectra can occur with noisy or truncated data
due to the smaller number of experimental constraints
on the true lineshape (Rovnyak et al., 2003).

Figure 5 demonstrates the use of non-uniform
sampling schedules to achieve resolution comparable
to extending a uniform acquisition by a factor of 4. It is
clear that the assignability of such spectra is signific-
antly enhanced by non-uniformly distributing samples
in indirect dimensions to long evolution times. In our
experience, non-uniform sampling can be used to ex-

tend the evolution time by a factor of 2–4 over the
range spanned by a uniform distribution of the same
number of samples, significantly improving the ex-
tent to which indirect evolution periods are acquired
relative to tmax = πR−1

2 .
Application of non-uniform sampling to both indir-

ect dimensions of 3D experiments will be described
in a subsequent publication, however we call atten-
tion to the impracticality of using uniform sampling
to recover high resolution at high fields. Given that
typical measurement times for 3D experiments can
be 1–5 days, if each indirect period were exten-
ded uniformly by a factor of three, then 9–45 days
would be needed per 3D experiment. In contrast
non-uniform sampling redistributes samples over the
increased evolution periods without altering the meas-
urement time. The limits for distributing samples non-
uniformly depend largely on the intrinsic S/N ratio
of the time domain data and the number of samples
used (Rovnyak et al., 2003). For routine application
of non-uniform sampling and MaxEnt reconstruction,
we advise adhering to factors of 2–4 for the ratio of
the non-uniformly sampled period to the uniformly
sampled period with an equivalent number of samples.

NMR systems operating in the range 18.8–21.1 T
are rapidly becoming available to most researchers as
components of multi-user regional and national shared
instrument facilities. We have shown that uniform in-
crementation cannot reasonably recover the resolution
offered at high fields, but significant improvements in
resolution can be obtained when MaxEnt reconstruc-
tion is applied to data that is non-uniformly acquired
to include samples at long evolution times. We expect
this methodology will be indispensable for increasing
the size and complexity of biomacromolecules access-
ible for study by NMR, and for obtaining the greatest
value from high field instruments.
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